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Abstract 
The paper also draws on experiences gained in working with pilot schools on the introduction of the 

software to teachers whose own background in 3D (and other) geometry is not very strong. In this 

paper we address the question: Given solely the graph of a rational function, from which both the 

numerator and the denominator are real monic polynomials, can the approximate location of the 

complex roots from either the numerator or denominator be determined? This is an extension of the 

authors’ previous work on locating complex roots of polynomial functions. This paper demonstrates 

that, under a set of simple conditions, the locations of these complex roots can be approximated. 

 

1. Introduction   
Through a number of investigations, we have considered visualizing the location of complex roots 

based on the graphs of quadratic, cubic, and quartic equations [2, 3, 5] and quintic real polynomials 

[4] and novel findings that evolved from these investigations.  As a natural extension, we now 

consider the graphs of rational functions and attempt to locate complex roots based solely on the 

graphs of these functions.  The following develops some observations and notions discovered through 

this investigation.  It is hoped that this investigation will further motivate student interest in the graphs 

of functions and their algebraic connections. 

A preliminary form of this paper was used as instructional materials in undergraduate and 

graduate real analysis classes at Appalachian State University in Boone, NC, USA.  Students reported 

to have expeditiously come to a deeper understanding of the topic of rational functions, graphs, real 

and complex zeros through the prose supported by the dynamic graphing applets.  Additionally, this 

material was used in a number of professional development scenarios for high school teachers.  Many 

expressed a desire to use the materials in their own upper level high school classes, believing that 

much of the material was accessible to their students.  Thus, the intended audience of this paper 

includes upper grades high school students, high school teachers, undergraduate and graduate 

mathematics majors, and university faculty.    

 

2. The role and power of conjectures 
The following discussions take the form of theorems leading to further observations and conjectures.  

While the development and proof of theorems is central to mathematics, one cannot devalue the role 
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of observations which lead to conjectures and, if proven, then to theorems.  The question may 

naturally arise, “What leads to observation and conjecture?”.  The answer is quite simple: inquiry and 

imagination. Bailey and Borwein [1] discuss the value of experimental mathematics, where students 

are allowed to interact with mathematical ideas – often in a dynamic computer mathematical system 

– and investigate, make observations, and generalize through conjectures.  Through these 

experimental opportunities, students become excited about the mathematics and enthusiastically take 

hold of findings as their own discoveries. 

 More than twenty-five years ago, one of the authors asked the question: Given only the graph 

of a real polynomial function, can one locate the complex roots when they exist?  He briefly partnered 

with a colleague to investigate the question, only to be told that there was no solution.  Undaunted, 

through the decades, the author revisited this question for moments at a time, only to be put away for 

years before being briefly reinvestigated again and then again placed on the shelf.  This cycle persisted 

until one day the author decided that he would partner with another researcher and persist to a 

solution.  As a consequence, there indeed were solutions [2, 3, 4, 5].  However, these solutions could 

never have been found without imagination to frame the question and inquiry to pursue the solution. 

 The question now at hand is: Given only the graph of a rational function with both numerator 

and denominator as real polynomial functions, can one locate the complex roots in either the 

numerator or the denominator when they exist?  At first blush, the answer might again seem to be in 

the negative.  However, employing ideas previously developed regarding complex roots of 

polynomials, observations can be made.  We invite the reader to imagine and inquire with us through 

some conjectures.  Provided in this article are dynamic apples to allow the reader to experiment with 

rational functions.  We also invite others to prove some of the conjectures that follow. 

 

3. Mathematical Background  
All polynomial functions investigated in this paper are real polynomials (i.e., polynomials with real 

coefficients).  Rational functions are herein defined as 𝑞(𝑥) = 𝑛(𝑥) 𝑑(𝑥)⁄ , where n(x) and d(x) are 

real polynomials.    

Authors [2, 3, 4, 5] found that, for polynomials with complex roots (a, ± bi) , the graphical 

behavior of the functions having complex roots is only observable when b is sufficiently close to the 

x-axis.  In summary: when b is small (sufficiently close to 0), the graph of the polynomial will produce 

extrema pointing toward the x-axis in the neighborhood of a; when b is of medium magnitude, the 

graph will demonstrate a noticeable “flattening” in the neighborhood of a; and when b is large (departs 

significantly from the x-axis), the behavior of the graph cannot be observed to determine the location 

of complex roots.  Employing more formal mathematical language, the flattening of the graph can be 

stated as diminishing the absolute value of the concavity of the graph in the region in question.  (We 

consider this in more detail below.)  These lead to the following conditions necessary for visualizing 

the location of complex roots on rational functions. 

 

Conditions:  For all complex roots (𝑎, ±𝑏𝑖) in either the numerator or denominator, 

b is assumed sufficiently close to the x-axis in order to observe the stated behavior.  In 

the instance where 𝑞(𝑥) = 𝑛(𝑥) 𝑑(𝑥)⁄ , where n(x) and d(x) are nonzero monic 

polynomials, the complex roots of n(x) and d(x) will be denoted (𝑎𝑛𝑗 , ±𝑏𝑛𝑗) and 

( 𝑎𝑑𝑘 , ±𝑏𝑑𝑘) respectively.  Real roots are denoted  and  respectively.  

 

4. Rational function theorems   
The findings described in this paper are discussed for the two cases: where complex roots are stacked 

– or nearly so – above real or complex roots, or when all roots are sufficiently horizontally separated 

such that none of the roots act as if they are stacked roots.  We now consider a number of theorems 

rn j rdk
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regarding these cases.  These theorems are instrumental in understanding the later observations made 

of the behavior of graphs of rational functions. 

 

4.1  Horizontally Separated (Unstacked) Roots 

We first consider the case where complex roots in the numerator or denominator are sufficiently 

horizontally distinct so that they do not act like roots vertically stacked over any other roots, either 

from the numerator or the denominator. 

 

Theorem 1.  As 𝑏𝑖 → 0 and 𝑓′(𝑥) = 0, then 

 
Thus, when 𝑏𝑖 → 0, 𝑓′(𝑥) will have an extremum at 𝑎𝑖. To demonstrate this, assume that r1 , r2, a1, 

and a2 are “sufficiently separated.” Define  

 
Then 

 
If b1 = 0, then x = a1 is a double real root and an extremum of q.  As b1 increases, leading to the 

scaling of 𝑞′(𝑎1) = 𝒪(𝑏1
2), we see that q moves off the axis, retaining the extrema until b1 becomes 

sufficiently large.  Since polynomials are continuous functions of their coefficients, and b1 only 

appears in the numerator polynomial, the extremum remains ‘near’ the complex root (𝑎1, 𝑏1) until b1 

becomes large enough for the extrema to become ‘flattened’; i.e., 𝑞′′(𝑎1) goes toward 0 as b1 becomes 

large.  Since the extrema being ‘lifted’ is a double root, it must also ‘point towards’ the x-axis. 

 If 𝑏2 = 0, then 𝑥 = 𝑎2 is a double pole or vertical asymptote with 𝑞(𝑎2 +) = 𝑞(𝑎2 −) = +∞. 

If 𝑏2 is nonzero and not large, there is an extremum near the former pole 𝑥 = 𝑎2 pointing away from 

the x-axis.  As 𝑏2 gets large, 𝑞(𝑥) flattens and tends toward the axis quickly with 𝑞(𝑥) = 𝒪(𝑏2
−2) 

and 𝑞′(𝑎2) = 𝒪(𝑏2
−2).  The extremum disappears as it crosses the horizontal asymptote 𝑦 = 1. 

When the complex roots are sufficiently close to the x-axis, these two cases can be 

summarized as: complex roots in the numerator can create extrema pointing toward the x-axis and 

complex roots from the denominator can create extrema pointing away from the x-axis.  These cases 

are depicted in Figure (1).  
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Figure (1) 
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4.2  Vertically Stacked Roots 

When complex roots from either the numerator or the denominator are vertically stacked above (1) 

real root from either the numerator or the denominator or (2) other complex roots in either the 

numerator or the denominator, specific behavior can be recognized in the graph of the rational 

function.  This leads to the three following theorems. 

 

Theorem 2.  Suppose f (x) =
f(x)

j(x)
×
(x - a)2 + b2

(x - a)2 + c2
 where f j  has neither a zero nor a pole near a.  Let 

f(x)

j(x)
=Q(x). Then 

f (x) =Q(x) × 1+
b2 - c2

(x - a)2 + c2

é

ë
ê

ù

û
ú. 

Thus, for x - a <d , where δ is some small, nonnegative value, 

𝑓(𝑥) ≈ 𝑄(𝑎) ∙ [1 +
𝑏2−𝑐2

𝑐2
]. 

Therefore, for x near a, the “stacked” complex roots will only affect the function in proportion to the 

relative difference between their respective imaginary parts.  [A small calculation proves this result.  

Since 𝑥 − 𝑎 is small, (𝑥 − 𝑎)2 + 𝑐2 is approximately 𝑐2.]  Figure (2) represents two versions of a 

function.  In the left version, the imaginary values are more separated vertically.  In the right version, 

the imaginary values are less separated vertically. 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 3.  For both x near a and b close to c, we have 

f (x) =Q(x) × 1+ e(x)( ) »Q(a), where 𝜀(𝑥) =
𝑏2−𝑐2

𝑐2
.   

Thus, 

𝑓′′(𝑎) =
𝑏2

𝑐2
 ∙𝑄′′(𝑎)⏟    

𝑔𝑜𝑒𝑠 𝑡𝑜 0 𝑖𝑓 𝑎 𝑖𝑠 𝑎𝑛 𝐼𝑃

+ 𝑄(𝑎) ∙
2

𝑐2
(1 −

𝑏2

𝑐2
) 

 

and if f has an inflection point (IP) at x=a, then the above shows how the inflection point is perturbed 

by the complex roots.  That is, the point of inflection shifts one way if b > c , the other when b < c , 

and does not shift when b = c.  For example, if f changes from concave down to up, then b2 > c2  

shifts the inflection point to the right.  

 

 

 

 

     
 

Figure (2). 
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Theorem 4.  

 
Thus, since |𝑓′′(𝑥)| diminishes in the region of the stacked roots, the absolute value of the 

concavity of the function diminishes in that region. In other words, the function “flattens” in that 

region.       

      

5. Graphical complex behavior  
Dynamic HTML applets are provided through hyperlinks in order to investigate the following ideas. 

In these applets, complex roots from either the numerator (denoted by red points) or denominator 

(denoted by green points) can be dragged about the coordinate plane to investigate the effect of the 

location of the complex roots to the graph of the function.  Notably, when the complex roots are 

dragged to lie on the x-axis (and thus become real roots – the additional real root denoted by blue 

points) they split into two distinct real roots which can then be moved on the x-axis.  [Note that 

complex roots: 𝐴 ± 𝑏𝑖 become real roots A and 𝑟1; 𝐶 ± 𝑑𝑖 become real roots C and 𝑟2; 𝐸 ± 𝑓𝑖 become 

real roots E and 𝑟3; and 𝐺 ± ℎ𝑖 become real roots G and 𝑟4.]  When the appropriate real root is dragged 

off from the x-axis, the other real root disappears and the dragged real root becomes a pair of complex 

roots.  This all occurs for real and complex roots from both the numerator and the denominator. 

 Additionally, each graphing applet accessed through the hyperlink provides two means of 

investigation.  First, the graphs provide suggested START and MOVE TO points to demonstrate 

ideas.   Second, these suggested points can be hidden or shown with the press of a button on the 

sketch.   Thus, after investigating the suggested point positions, the user can hide the suggestions and 

experiment further with the dynamic sketch without the clutter of additional points and textual 

directions. 

 The remainder of this investigation includes observations regarding the behavior of rational 

functions. In some cases, the complex and real roots are sufficiently horizontally separated so that 

they act as they are distinct and not overlapping Case 1.  In other scenarios, some of the complex 

roots stack above some other real or complex roots and their distinction may not be recognized.  We 

consider these as two cases: Case 2 contains at least one real root in both the numerator and the 

denominator and Case 3 contains no real roots in either the numerator or the denominator.  Thus, we 

must consider all rational functions through three cases. 

 

5.1  Case 1 

Given that all values , , and are sufficiently separated so as to not create the behavior of 

overlapping or stacked roots.   

 

 

 

 

 

 

 

 

rn j rdk an j adk

 
Figure (Case 1A). 

 
Figure (Case 1B). 
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Case 1A. In the region of , the graph may possess either a local extremum pointing toward 

the x-axis (for small values of b) or a local flattening (diminishing the absolute value of the concavity) 

of the graph (for medium values of b). (See Figure (Case 1A).) To experiment, use the applet located 

at the URL https://php.radford.edu/~ejmt/v12n2n1/Case1A.  (Note.  In all dynamic applets in this 

paper, recommended moves of points are provided to the reader.  However, to allow unfettered 

experimentation, all real and complex roots are movable.  If readers move too many points and get 

confused by the resulting actions in the graph, they can simply open the applet anew and the graph 

will be in its original form.)    

Case 1B. In the region of , the graph may possess either a local extremum (for small values 

of b) pointing vertically away from a non-vertical (horizontal, oblique, or curved) asymptote or a 

local flattening (diminishing the absolute value of the concavity) (for medium values of b). (See 

Figure (Case 1B).) To experiment, use the applet located at the URL 

https://php.radford.edu/~ejmt/v12n2n1/Case1B. 

 

5.2  Case 2 

A number of the observations in the section are connected to the Rational Function Theorems 

previously posed.  Cases for these conjectures are based on some values , , and being 

insufficiently separated so as to avoid the behavior of overlapping roots.  However, this leads to a 

number of subcases.  Case 2 considers when complex roots from either the numerator or denominator 

are vertically stacked with real roots from either the numerator or denominator. 

 Prior to considering these cases, a simple notion can be seen as driving the results: real roots 

win.  Simple algebraic manipulation will demonstrate that the real roots of a rational function cannot 

be removed.  Thus, real roots in the numerator will produce x-intercepts and real roots in the 

denominator will produce vertical asymptotes, regardless of the location of the complex roots.  Thus, 

informally, we can state that the real roots in either the numerator or denominator overpower any 

complex roots. This can be demonstrated through: 

For a real root in the numerator divided by a complex root in the denominator: Suppose 

𝑓(𝑥) =
𝜙(𝑥)

𝜓(𝑥)
∙

𝑥−𝑟

(𝑥−𝑎)2+𝑏2
, where 𝜙 𝜑⁄  has neither zero nor pole near a, with 𝑎 ≈ 𝑟 and 

𝑥 ≈ 𝑎. Then 

𝑓(𝑥) ≈ 𝑄(𝑥) ∙
0

02+𝑏2
≈ 𝑄(𝑎) ∙ 0 = 0. 

Informally, we can summarize this to mean that the real root in the numerator wins.  

The complex root can have no effect on the graph intersecting the x-axis at the real 

zero. 

 

For a real complex root in the numerator divided by a real root in the denominator: 

Suppose 𝑓(𝑥) =
𝜙(𝑥)

𝜓(𝑥)
∙
(𝑥−𝑎)2+𝑏2

𝑥−𝑟
, where 𝜙 𝜑⁄  has neither zero nor pole near a, with 

𝑎 ≈ 𝑟 and 𝑥 ≈ 𝑎.  Then 

𝑓(𝑥) = 𝑄(𝑥) ∙ (
(𝑥−𝑎)2

𝑥−𝑟
+

𝑏2

𝑥−𝑟
) ≈ 𝑄(𝑎) ∙ (±∞) = 𝑠𝑖𝑔𝑛(𝑄(𝑎)) ∙ ∞. 

Informally, we can summarize this to mean that the real root in the denominator wins.  

The complex root can have no effect on the graph possessing a pole at the real zero in 

the denominator. 

 

However, the complex roots still have some effect on the graph.  Notably, the complex 

roots cannot produce any additional x-intercepts or vertical asymptotes.  Thus, the only 

other possible effect that complex roots vertically stacked has with real roots at 𝑟𝑖 is 

to diminish the value of |𝑓′′(𝑟𝑖)|.   

an j

adk

rn j rdk an j adk

https://ejmt.mathandtech.org/Contents/v12n2n1/Case1A/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case1B/index.html


The Electronic Journal of Mathematics and Technology, Volume 12, Number 2, ISSN 1933-2823 

  

 

276 

 

Case 2A, : complex roots in the numerator are stacked with a real root in the 

numerator.  The graph may possess a flattening near the real root .  (See Figure (Case 2A).)  To 

experiment, use this applet. 

Case 2B, : complex roots in the numerator are stacked with a real root in the 

denominator.  The graph may possess a flattening near the real pole at 𝑟𝑑𝑘.  (See Figure (Case 2B).)  

To experiment, use this applet. 

Case 2C, : complex roots in the denominator are stacked with a real root in the 

numerator.  The graph may possess a flattening near the real root .  (See Figure (Case 2C).)  To 

experiment, use this applet. 

Case 2D, : complex roots in the denominator are stacked with a real root in the 

denominator.  The graph may possess a flattening near the real pole at 𝑟𝑑𝑘.  (See Figure (Case 2D).)  

To experiment, use this applet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3  Case 3 

 Case 3A, : two pairs of complex roots in the numerator are stacked.  The graph may 

possess a flattened local extremum pointing toward the x-axis.  (See Figure (Case 3A).)  To 

experiment, use this applet. 

 Case 3B, : two pairs of complex roots in the denominator are stacked. The graph may 

possess a flattened local extremum pointing vertically away from a non-vertical asymptote 

(horizontal, oblique, or curved) or a local flattening.  (See Figure (Case 3B).)  To experiment, use this 

applet. 

 

Case 3C, : a pair of complex roots from the numerator are stacked with a pair of 

complex roots from the denominator.  

 

 

an j ~ rn j

rn j

an j ~ rdk

adk ~ rn j

rn j

adk ~ rdk

an1
~ an2

ad1
~ ad2

an j ~ adk

 
Figure (Case 2A). 

 

 
Figure (Case 2B). 

 

 
Figure (Case 2C). 

 

 
Figure (Case 2D). 

 

https://ejmt.mathandtech.org/Contents/v12n2n1/Case2A/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case2B/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case2C/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case2D/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case3A/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case3B/index.html
https://ejmt.mathandtech.org/Contents/v12n2n1/Case3B/index.html
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Since 
 
an j ∼ adk , for a moment we will treat them as equal.  Then, as seen in Theorem 3, 

x - an j( )
2

+ bn j
2

x - adk( )
2

+ bdk
2

=
x - a( )

2
+ bn j

2

x - a( )
2
+ bdk

2
= 1-

bn j
2 - bd j

2

x - a( )
2
+ bdk

2
. 

This reveals that the numerator becomes a constant and that the complex roots remain in the 

denominator.  Thus, informally, we can state that the complex roots in the denominator overpower 

the complex roots in the numerator.  Thus, the graph may possess either a local extremum (for small 

values of b) pointing away from a non-vertical asymptote (horizontal, oblique, or curved) or a local 

flattening (for medium values of b).  (See Figure (Case 3C).)  To experiment, use this applet.  

 

 

 

 

 

 

 

 

 

6.  Conclusions, Comments, and Invitations 
Having previously determined the location of complex roots based on the graphs of quadratic, cubic, 

quartic, and quintic real monic polynomials, this investigation now concludes with the location of 

complex roots from either the numerator or denominator of rational functions. In summary, when 

particular conditions are met regarding the horizontal stacking or separation of real and complex roots 

and the proximity of the complex roots to the x-axis, approximate locations of complex roots can be 

determined.  

The authors are particularly happy that this series of investigation has culminated in these 

findings. This is particularly the case when we remember that the seed question for this series of 

investigations initiated more than a quarter century ago. While this has led to fruitful results and 

publications, we feel the need to move on to other types of investigations. 

We invite the reader to look further into these ideas and make additional discoveries. We 

invite them to dare to imagine, investigate, conjecture, and, hopefully, make findings far beyond ours. 

In conclusion, we simply state, “Tag. You’re it.”   

 

7. References 
1. Bailey, D. H., and Borwein, J. M., 2005: Experimental mathematics: Examples, methods and 

implications. Notices of the AMS, 52(5), 502-514. 

2. Bauldry, W., Bossé, M. J., and Otey, S. H., 2017a, in press: Circle constructions of complex 

polynomial roots.  Electronic Journal of Mathematics and Technology (eJMT).  

3. Bossé, M. J., and Bauldry, W., 2017b, in press: Locating complex roots on quintic functions.  

The Mathematics Enthusiast.  

4. Bauldry, W., Bossé, M. J., and Otey, S. H., 2017c, in press: Visualizing complex roots.  The 

Mathematics Enthusiast.  

5. Ellis, W., Bauldry, W., Bossé, M. J., and Otey, S. H., 2016; Employing technology to visualize 

complex roots of real polynomials.  Proceedings of Technology and its Integration in 

Mathematics Education, Mexico City, June 29 - July 2, 2016. 

 
Figure (Case 3A). 

 

 
Figure (Case 3B). 

 

 
Figure (Case 3C). 
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